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Abstract

Tensor networks are efficient factorisations of high-dimensional tensors into a network
of lower-order tensors. They have been most commonly used to model entanglement in
quantum many-body systems and more recently are witnessing increased applications in
supervised machine learning. In this work, we formulate image segmentation in a supervised
setting with tensor networks. The key idea is to first lift the pixels in image patches to
exponentially high-dimensional feature spaces and using a linear decision hyper-plane to
classify the input pixels into foreground and background classes. The high-dimensional
linear model itself is approximated using the matrix product state (MPS) tensor network.
The MPS is weight-shared between the non-overlapping image patches resulting in our
strided tensor network model. The performance of the proposed model is evaluated on
three 2D- and one 3D- biomedical imaging datasets. The performance of the proposed
tensor network segmentation model is compared with relevant baseline methods. In the 2D
experiments, the tensor network model yields competitive performance compared to the
baseline methods while being more resource efficient.12

1. Introduction

The past decade has witnessed remarkable progress in several key computer vision tasks
with the enthusiastic adoption of deep learning methods (LeCun et al., 2015; Schmidhuber,
2015). Several auxiliary advancements such as powerful hardware for parallel processing (in
the form of graphics processing units/GPUs), access to massive amounts of data, better opti-
mizers (Ruder, 2016), and many practical tricks such as data augmentation, dropout (Hinton
et al., 2012), batch normalization (Ioffe and Szegedy, 2015) etc. have contributed to the
accelerated improvement in the performance of convolutional neural networks (CNNs)-based
computer vision models (LeCun et al., 1989). Biomedical image segmentation has also been
immensely influenced by these developments, in particular with the classic U-Net (Ron-
neberger et al., 2015) to the more recent nnU-Net (Isensee et al., 2021).

1. Source code: https://github.com/raghavian/strided-tenet
2. This is an extension of the preliminary conference work in Selvan et al. (2021a).
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The dependency of these CNN-based models on high-quality labeled data and specialized
hardware could make them less desirable in certain situations. For instance, when dealing
with biomedical images where labeled data are expensive and hard to obtain; or in developing
countries where access to expensive hardware might be scarce (Ahmed and Wahed, 2020).
The carbon footprint associated with training large deep learning models is also of growing
concern (Selvan, 2021). Investigating fundamental ideas that can alleviate some or all of
these concerns could be valuable going forward. It is in this spirit that we here explore the
possibility of using tensor networks for image segmentation.

Tensor networks allow manipulations of higher order tensors in a computationally ef-
ficient manner by factorising higher order tensors into networks of lower-order tensors.
This property of theirs has been used to study entanglement in quantum many-body sys-
tems (Orús, 2014). From a machine learning point of view, they have similarities with
kernel based methods; in that, tensor networks can be used to approximate linear decisions
in exponentially high-dimensional spaces (Novikov et al., 2018). This feature of theirs has
been used in wide ranging applications such as: dimensionality reduction (Cichocki et al.,
2016), feature extraction (Bengua et al., 2015), to compress neural networks (Novikov et al.,
2015; Dai et al., 2020) and discrete probabilistic modelling (Miller et al., 2021; Bonnevie and
Schmidt, 2021). Other recent works such as in Dai et al. (2020) perform video scene segmen-
tation using CNNs and employ tensor networks to compress the CNN operations. Machine
learning using tensor networks is a recent topic that is gaining traction in both – physics and
ML – communities with works such as Stoudenmire and Schwab (2016); Efthymiou et al.
(2019). Tensor network based machine learning offers a novel class of models that have sev-
eral interesting properties: they are linear, end-to-end learnable and can be resource efficient
in many situations (Selvan and Dam, 2020). They have been successfully used in several
imaging based downstream tasks such as generative modelling of small images (Han et al.,
2018) and medical image classification (Selvan et al., 2021b).

In this work, we present the strided tensor network which is a tensor network based
medical image segmentation method. The segmentation is performed on image patches by
approximating linear pixel classification rules using tensor networks. This approach has
similarities to other classical pixel classification methods used for segmentation such as
Soares et al. (2006); Vermeer et al. (2011) that operate in a hand-crafted feature space.
The key difference of the proposed method is that it does not require designed features that
encode domain specific knowledge. Further, the proposed model can be trained in an end-
to-end manner in a supervised learning set-up by backpropagating a relevant loss function.
This work is based on the preliminary work in Selvan et al. (2021a), which was the first
formulation of tensor networks for image segmentation3. The key contributions, different
from Selvan et al. (2021a), in this work are:

1. Investigation of tensor network based 3D segmentation method
2. Novel hybrid segmentation method that combines CNNs and tensor networks
3. Discussions on different local feature maps
4. Comprehensive evaluation on three diverse 2D datasets
5. Experiments on a 3D dataset
6. Additional baseline methods for comparisons

3. Selvan et al. (2021a) was presented at the 27th international conference on Information Processing in
Medical Imaging (IPMI), June 28th – June 30th, 2021
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Figure 1: a) Graphical tensor notation depicting an order-0 tensor (scalar S), order-1 tensor
(vector V i), order-2 tensor (matrix M ij) and an order-3 tensor T ijk. Tensor indices – seen
as the dangling edges – are written as superscripts by convention. b) Tensor notations
can capture operations involving higher order tensors succinctly. For instance, vector inner
product is depicted on top where there is a single common edge over which the summation
is carried out. Similarly, matrix product of two matrices is shown where the common edge
is subsumed in the operation. As trace of a matrix yields a scalar this is depicted as the
self-connected edge in the final tensor diagram.

2. Background

Working with tensors of orders higher than three can be cumbersome. Tensor notations
are graphical representations of high-dimensional tensors and operations on them as intro-
duced in (Penrose, 1971). A grammar of tensor notations has evolved through the years
enabling representation of complex tensor algebra. This not only makes working with high-
dimensional tensors easier but can also provides insight into efficiently manipulating them.
Figure 1 shows the basics of tensor notations and one important operation – tensor contrac-
tion (in sub-figure b). We build upon the ideas of tensor contractions to understand tensor
networks such as the MPS, which is used extensively in this work. We point to resources
such (Bridgeman and Chubb, 2017) for more detailed introduction to tensor notations. 4

Tensor networks for image classification tasks have been studied extensively in recent
years. The earliest of the image classification methods that used tensor networks in a su-
pervised learning set-up is the seminal work in Stoudenmire and Schwab (2016). This work
was followed up by several other formulations of supervised image classification with tensor
networks (Klus and Gelß, 2019; Efthymiou et al., 2019). The key difference between these
methods is in the procedures used to optimise parameters of the tensor network, and the 1D
input representations used. The methods in Stoudenmire and Schwab (2016); Klus and Gelß
(2019) use the density matrix renormalisation group (DMRG) (Schollwöck, 2005; McCul-
loch, 2007) whereas in Efthymiou et al. (2019) optimisation is performed using automatic
differentiation. The above mentioned methods use the matrix product state (MPS) tensor
network which is defined for 1D inputs, and they use a simple flattening operation to convert
small, 2D images into 1D vector input to MPS. Additional modifications to tensor network

4. https://tensornetwork.org/ also has some well-curated introductory material.
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Figure 2: a) High level overview of the proposed strided tensor network model. Matrix
product state (MPS) operations are performed on non-overlapping regions of the input
image, X, of size H×W resulting in the predicted segmentation. The flattening operation
is depicted as "ravel" which flattens 2D K × Kimage patches into 1D vectors of size K2.
Local feature maps ψ(·) are applied to individual pixels (elements of 1D vector) to increase
the local features. The global feature map, φ(·), is obtained by performing the tensor outer
product of local feature maps. A matrix product state (MPS) tensor network with learnable
parameters, Θ, is used to learn a linear segmentation model. Finally, the 1D segmentation
maps are transformed back into the image space (unravel operation) to obtain the predicted
segmentation.

based methods were required for dealing with more complex and higher resolution image
data, such as the ones encountered in medical image analysis. In Selvan and Dam (2020);
Selvan et al. (2021b), a multi-layered tensor network approach was used where instead of
a single flattening operation smaller image neighbourhoods were squeezed to retain spatial
structure in the image data.

3. Methods

3.1 Overview

We propose a tensor network based model to perform image segmentation. This is performed
by learning a linear segmentation model in an exponentially high-dimensional feature space.
Specifically, we derive a hyper-plane such that is able to classify pixels in a high-dimensional
feature space into foreground and background classes across all image patches in the dataset.
A high level overview of the proposed model that describes these steps is illustrated in
Figure 2.

Input images are first converted into non-overlapping image patches. These image
patches are flattened (ravel operation in Figure 2) into 1D vectors and simple feature trans-
formations such as the sinusoidal transformations in Stoudenmire and Schwab (2016) are
applied to each pixel (elements of 1D vector) to obtain the local feature maps. These local
feature maps are similar to the feature extraction performed in other model-based meth-
ods that use multi-scale Hessian features in vesselness-type methods Frangi et al. (1998),
except that in tensor networks these local feature maps are used in lifting the input data
to a higher dimensional space. The lift itself is achieved by performing tensor products of
the local feature maps resulting in the global feature map. Weights of a linear model that
operates on the global feature map are approximated using the matrix product state (MPS)
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tensor network5 (Perez-Garcia et al., 2006; Oseledets, 2011). These learnable MPS tensor
networks are weight-shared across the different image patches (implemented as a batched
operation) resulting in our strided tensor network model for performing image segmentation.
The predicted segmentations are 1D vectors which are then reshaped (unravel block in Fig-
ure 2) back into the image space to correspond to the input image patch. These predicted
segmentations are compared with the segmentation mask from training data and a suitable
loss is backpropagated to optimise the weights of our model.

We next describe the specifics of approximating the segmentation rule with MPS and a
discussion on different local feature maps in the remainder of this section.

3.2 Image segmentation using linear models

We start out by describing the image segmentation model that operates on the full input
image which will also help highlight some of the challenges of using MPS tensor networks
for image segmentation.

Consider a 2 dimensional image, X ∈ RH×W×C with N = H×W pixels and C channels.
The task of obtaining an M–class segmentation, Y ∈ {0, 1}H×W×M is to learn the decision
rule of the form f(· ; Θ) : X 7→ Y , which is parameterised by Θ. These decision rules,
f(· ; Θ), could be linear models such as support vector machines (Vapnik et al., 1995) or
non-linear transfer functions such as neural networks. In this work, we explore f(· ; Θ)
that are linear and learned using tensor networks. For simplicity, we assume a two class
segmentation problem6, implying M = 2. However, extending this work to multi-class
segmentation of inputs is straightforward.

The linear decision rule is not applied to the raw input data but to the input data lifted
to an exponentially high-dimensional feature space. This is based on the insight that non-
linearly separable data in lower dimensions could become linearly separable when lifted to
a sufficiently high-dimensional space (Cortes and Vapnik, 1995). The lift in this work is
accomplished in two steps.
Step 1: The input image is flattened into a 1-dimensional vector x ∈ RN×C . Simple non-
linear feature transformations, such as the sinusoidal transformations in Eq. (3), are applied
to the elements of the 1D vector (originally image pixels) to obtain local feature maps. The
local feature map for a pixel xj is given as ψij (xj) : RC 7→ RC·d indicating that the local
feature maps are applied to each channel of the input pixel. Note that the tensor index
ij = C ·d and is the tensor index dimension. Different choices for the local feature maps are
presented in Section 3.3.
Step 2: A global feature map is obtained by performing the tensor product7 of the local
feature maps. This operation takes N order-1 tensors and outputs a single order-N tensor,
Φi1...iN (x) ∈ R(C·d)N and is given by

Φi1...iN (x) = ψi1(x1)⊗ ψi2(x2)⊗ · · · ⊗ ψiN (xN ). (1)

5. Matrix product state tensor networks are also known as Tensor Trains in literature.
6. The case when M=2 can also be modeled using a single prediction channel (M=1) and applying a

p=0.5 threshold as a decision rule per pixel, as is common when using sigmoid- and softmax- activation
functions in deep learning.

7. Tensor product is the generalisation of matrix outer product to higher order tensors.
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Note that after this operation each image can be treated as a vector in the (C · d)N dimen-
sional Hilbert space (Orús, 2014; Stoudenmire and Schwab, 2016).

Given the (C · d)N global feature map in Eq. (1), a linear decision function f(·; Θ) can
be estimated by simply taking the tensor dot product of the global feature map with an
order-(N+1) weight tensor, Θm

i1...iN
:

fm(x ; Θ) = Θm
i1...iN

· Φi1...iN (x). (2)

This dot product between an order N and order-(N+1) tensor yields an order-1 tensor as
the output (seen here as the tensor index m). The resulting order-1 tensor from Eq. (2) has
N entries corresponding to the pixel level segmentations, which can be unraveled back into
the image space. Eq. (2) is depicted in tensor notation in Figure 4-a.

3.3 Choice of local feature maps

The first step after flattening the input image is to increase the number of local features per
pixel. There are several local maps in literature to choose from:

1. In quantum physics applications, simple sinusoidal transformations that are related to
wavefunction superpositions are used as the local feature maps. A general sinusoidal
local feature map from (Stoudenmire and Schwab, 2016), which increases local features
of a pixel from 1 to d is given as:

ψij (xj) =

√(
d− 1

ij − 1

)(
cos(

π

2
xj)
)(d−ij) (

sin(
π

2
xj)
)(ij−1)

∀ ij = 1 . . . d. (3)

The intensity values of individual pixels, xj , are assumed to be normalised to be in
[0, 1].

2. The feature map introduced in Efthymiou et al. (2019) simply uses intensity-based
local feature maps with d = 2:

ψij (xj) = [xj , (1− xj)]. (4)

3. Scalable Fourier features used in transformer-type models to encode positional infor-
mation can also be used to obtain expressive local feature maps (Mildenhall et al.,
2020; Jaegle et al., 2017):

ψij (xj) =
[
sin(2ijπxj), cos(2ijπxj)

]
∀ ij = 1 . . . d/2. (5)

4. Finally, one could use a CNN-based feature extractor that operates on the 2D input
image to learn a set of local features. Using these learnable local feature maps results
in the hybrid strided tensor network model that combines CNNs for local feature ex-
traction and MPS for segmentation. In this case the number of filters of the final CNN
layer is the local feature map dimension, d.

6
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3.4 Strided tensor networks

The dot product in Eq. (2) looks conceptually easy, however, working with it unveils two
crucial challenges:

1. Intractability of the dot product
2. Loss of spatial correlation

We next address each of these challenges along with the proposed solutions.

3.4.1 Intractability of the Dot Product addressed by Matrix Product
States

The number of parameters in the weight tensor Θ in Eq. (2) is (C ·d)N , which is massive; even
for binary segmentation tasks it can be a really large number. To bring that into perspective,
consider the weight tensor required to operate on a single channel, tiny input image of size
16×16 with local feature map d = 2: the number of parameters in Θ is dN = 2256 ≈ 1077

which is close to the number of atoms in the observable universe!8 (estimated to be about
1080).

Recollect that the global feature map Φi1...iN (x) in Eq. (1) is obtained by flattening the
input data. Operating in the (C · d)N dimensional space implies that all the pixels are
entangled or from a graphical model point of view connected to each other (fully connected
neighbourhood per pixel), which is prohibitively expensive and inefficient. From an image
analysis point of view it is well understood that for downstream tasks such as segmentation,
useful pixel level decisions can be performed based on smaller neighbourhoods. This insight
that reducing the pixel interactions to a smaller neighbourhood can yield reasonable decision
rules leads us to seek out an approximation strategy that accesses only useful interactions in
the global feature space. This approximation is only made inevitable as the exact evaluation
of the linear model in Eq. (2) is simply infeasible.

Computing the inner product in Eq. (2) becomes infeasible with increasing N (Stouden-
mire and Schwab, 2016). It also turns out that only a small number of degrees of freedom in
these exponentially high-dimensional Hilbert spaces are relevant (Poulin et al., 2011; Orús,
2014). These relevant degrees of freedom can be efficiently accessed using tensor networks
such as the MPS (Perez-Garcia et al., 2006; Oseledets, 2011). One can think of this as a
form of lower dimensional sub-space of the high-dimensional Hilbert space accessed using
tensor networks where the task-specific information is present. In image analysis, accessing
this smaller sub-space of the joint feature space could correspond to accessing interactions
between pixels that are local either in spatial- or in some feature-space sense that is relevant
for the task.

MPS is a tensor factorisation method that can approximate any order-N tensor with a
chain of order-3 tensors. This is visualized using tensor notation in Figure 3 for an illustrative
example. Figure 4-b shows the tensor notation of the MPS approximation to Θm

i1...iN
using

A
ij
αjαj+1∀ j = 1 . . . N which are of order-3 (except on the borders where they are of order-2).

The dimension of subscript indices of αj which are contracted can be varied to yield better
approximations. These variable dimensions of the intermediate tensors in MPS are known

8. https://en.wikipedia.org/wiki/Observable_universe
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Figure 3: a) An example showing the matrix product state (MPS) factorisation. Here the
higher order tensor is W 4253 of order 4 which is approximated using a network of order-2
and order-3 tensors as shown in the illustration. Performing this factorisation can yield
an efficient approximation to W 4253 comprising the learnable parameters in A

ij
αjαj+1 . A

clear advantage is that the number of parameters in |W 4253| = 120, whereas the MPS
approximation would only comprise 42 parameters. For higher order tensors the efficiency
in reducing the number of parameters can be much higher. b) The MPS factorisation in
tensor notation.

as bond dimension β. MPS approximation of Θm
i1...iN

depicted in Figure 4-b is given by

Θm
i1...iN

=
∑

α1,α2,...αN

Ai1α1
Ai2α1α2

Ai3α2α3
. . . A

m,ij
αjαj+1 . . . A

iN
αN
. (6)

The components of these intermediate lower-order tensors Aijαjαj+1∀ j = 1 . . . N form the
tunable parameters of the MPS tensor network. This MPS factorisation in Eq. (6) reduces
the number of parameters to represent Θ from (C ·d)N to {N ·d·C ·β2} with β controlling the
quality of these approximations9. Note that when β = (C · d)N/2 the MPS approximation
is exact (Orús, 2014; Stoudenmire and Schwab, 2016).

3.4.2 Loss of Spatial Correlation addressed by MPS on Patches

The quality of the approximations of the linear model in Eq. (2) using MPS is controlled
by bond dimension β. As mentioned above the number of parameters grow quadratically
with β and linearly with the number of pixels. This results in a scenario where the MPS
approximation works best for smaller images. This is the case in existing MPS based image
analysis methods, where almost always the input image is about 32×32px (Stoudenmire and
Schwab, 2016; Efthymiou et al., 2019; Han et al., 2018) and bond dimensions are < 50. For
larger input data and smaller bond dimensions, the necessary spatial structure of the images
to perform reasonable approximations of decisions rules might not be retained. And lack
of spatial pixel correlation can be detrimental to downstream tasks; more so when dealing
with complex structures encountered in medical images. We propose to alleviate this by

9. Tensor indices are dropped for brevity in the remainder of the manuscript.
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Figure 4: a) Linear decision rule in Eq. 2 depicted in tensor notation. Note that Θ has N+1
edges as it is an order-(N+1) tensor. The d-dimensional local feature maps are the gray
nodes marked ψij (xj). b) Matrix product state (MPS) approximation of Θ in Eq. 6 into a
tensor train comprising up to order-3 tensors, Aijαjαj+1 .

using a patch-based approach. The issue of loss in spatial pixel correlation is not alleviated
with MPS as it operates on flattened input images. MPS with higher bond dimensions
could possibly allow interactions between all pixels but the quadratic increase in number
of parameters with the bond dimension β, working with higher bond dimensions can be
prohibitive.

To address this issue, we apply MPS on small non-overlapping image regions. These
smaller patches can be flattened with less severe degradation of spatial correlation. Similar
strategy of using MPS on small image regions has been used for image classification using
tensor networks in (Selvan and Dam, 2020). This is also in the same spirit of using convo-
lutional filter kernels in CNNs when the kernel width is set to be equal to the stride length.
This formulation of using MPS on regions of size K ×K with a stride equal to K in both
dimensions results in the strided tensor network formulation, given as

f(x; ΘK) = {ΘK · Φ(x(i,j))} ∀ i = 1, . . . ,H/K, j = 1, . . . ,W/K (7)

where (i, j) are used to index the patch from row i and column j of the image grid with
patches of size K ×K. The weight matrix in Eq. (7), ΘK is subscripted with K to indicate
that MPS operations are performed on K ×K patches.

In summary, with the proposed strided tensor network formulation, linear segmentation
decisions in Eq. (2) are approximated at the patch level using MPS. The resulting patch
level predictions are tiled back to obtain the H ×W segmentation mask.

3.5 Optimisation

The weight tensor, ΘK , in Eq. (7) and in turn the lower-order tensors in Eq. (6) which are
the model parameters can be learned in a supervised setting. For a given labelled training

9
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Figure 5: Histopathology images from multiple organs (top row) and the corresponding
binary masks (bottom row) from the MO-NuSeg dataset (Kumar et al., 2017).

set with T data points, D : {(x1,y1), . . . (xT ,yT )}, the training loss to be minimised is

Ltr =
1

T

T∑
t=1

L(f(xi),yi), (8)

where yi are the binary ground truth masks and L(·) can be a suitable loss function suitable
for segmentation tasks. In this work, we use either cross-entropy loss or Dice loss depending
on the dataset.

4. Data & Experiments

4.1 Data

We report experiments on four medical image segmentation datasets of different image
modalities with varying complexities. Three of the datasets are for 2D segmentation and
the final one is for 3D segmentation. The datasets are further described below.

4.1.1 MO-NuSeg Dataset

We use the multi-organ nuclei segmentation (MO-NuSeg) challenge dataset10 (Kumar et al.,
2017) consisting of 44 Hematoxylin and eosin (H&E) stained tissue images, of size 1000×1000,
with about 29,000 manually annotated nuclear boundaries. This dataset is challenging due
to the variations in the tissues that are from seven different organs. The dataset consists of
44 images split into 30 training/validation images and 14 testing images. Samples from the
MO-NuSeg dataset and their corresponding binary nuclei masks are shown in Figure 5.

4.1.2 Lung-CXR Dataset

The lung chest X-ray dataset is collected from the Shenzhen and Montgomery hospitals with
posterio-anterior views for tuberculosis diagnosis (Jaeger et al., 2014). The CXR images used
in this work are scaled down to 128×128 with corresponding binary lung masks for a total

10. https://monuseg.grand-challenge.org/
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Figure 6: Four chest X-ray images (top row) and the corresponding binary masks (bottom
row) from the Lung-CXR dataset.

Figure 7: Sample RGB images from the retinal vessel segmentation dataset. The variations
in the dataset due to the underlying datasets (DRIVE, STARE and CHASE) is evident in
these samples. Binary vessel segmentations are visualized in the bottom row.

of 704 cases which is split into training (352), validation (176) and test (176) sets. Four
sample CXRs and the corresponding lung masks are shown in the Figure 6.

4.1.3 Retinal vessel segmentation dataset

The third 2D segmentation task was formulated by pooling three popular retinal vessel
segmentation datasets: DRIVE (Staal et al., 2004), STARE (Hoover et al., 2000) and
CHASE (Owen et al., 2011). In total we obtained 68 RGB images of height 512 px and
of width varying between 512px and 620px. A random split of 48+10+10 images was used
for training, validation and test purposes, respectively. Sample images along with corre-
sponding vessel segmentation masks from the retinal dataset are shown in Figure 7.

11
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Figure 8: Three views of the T1 volume for one of the BraTS dataset volumes are visualized
above with an overlay of the tumour regions (yellow). (Menze et al., 2014)

4.1.4 Brain tumour dataset

The multimodal brain tumour segmentation (BraTS) dataset (Menze et al., 2014; Bakas
et al., 2017, 2018) from the 2016 and 2017 challenge edition is used to study the segmenta-
tion performance on 3D data. The BraTS dataset consists of 3D volumes of skull stripped
brain images in four modalities: T1, post-contrast T1-weighted, T2-weighted and T2 fluid
attenuated inversion recovery (FLAIR), acquired with different scanners from multiple in-
stitutions. Manual annotations for three tumour sub-types are provided; in this work we
create a binary segmentation task by merging the three classes. The total dataset used in
this work consists of 484 4D volumes obtained from the Medical Decathlon challenge (An-
tonelli et al., 2021)11 which are split into three partitions for training (242), validation (121)
and test (121) purposes. All volumes were of size 224x224x160 with isotropic 1mm3 voxels.
Three views of one of the data points is visualized in Figure 8 where the tumour regions are
overlaid with the T1 volume.

4.2 Experiments

4.2.1 Experimental set-up

The experiments were designed to study the segmentation performance of the proposed
strided tensor network model on the three 2D- and one 3D- datasets. Different, relevant
baseline methods were used to compare the performance with the proposed model. The
CNN model used was the standard U-Net (Ronneberger et al., 2015; Çiçek et al., 2016),
a modified tensor network (MPS TeNet) that uses one large MPS operation similar to
the binary classification model in (Efthymiou et al., 2019), and a multi-layered perceptron
(MLP). For MO-NuSeg, which is a small dataset with 30 training examples, we also compare
to nnU-Net (Isensee et al., 2021) which performs an extensive hyperparameter search using
a five-fold cross validation and additional pre-/post- processing steps. We followed the
recommended training protocol for nnU-Net according to (Isensee et al., 2021) prescribed in
their software repository12. To compare the efficiency of the proposed method, we compare to
the Lite Reduced Atrous Spatial Pyramid Pooling (LR-ASPP) network (Howard et al., 2019)
which is a MobileNet-V3 based segmentation method. We used the LR-ASPP pretrained

11. http://medicaldecathlon.com/
12. https://github.com/MIC-DKFZ/nnunet#model-training
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on COCO 2017 dataset provided in PyTorch13 without any further hyperparameter tuning,
except the training learning rate.

Batch size (B) for different experiments were designed based on the maximum size usable
by the baseline U-Net models. This resulted in the use of 1, 32 and 4 for the MO-NuSeg,
Lung-CXR and Retinal segmentation datasets, respectively. For the BraTS 3D dataset B
was 2. For fairer comparison all other models were trained with the same batch size. All
models were trained with the Adam optimizer using an initial learning rate of 5 × 10−4,
except for the MPS TeNet which required a smaller learning rate for convergence (1×10−5).
Training was done until 300 epochs had passed or until there was no improvement in the
validation accuracy for 10 consecutive epochs. Predictions on the test set were done using
the best performing model chosen based on the validation set performance. The experiments
were implemented in PyTorch and trained on a single Nvidia GTX 1080 graphics processing
unit (GPU) with 8GB memory. The development and training of all models in this work was
estimated to produce 71.9 kg of CO2eq, equivalent to 601.5 km travelled by car as measured
by Carbontracker14 (Anthony et al., 2020).

Data augmentation was performed for the retinal vessel segmentation to alleviate the
variations from the different source datasets (see Figure 7). Horizontal flipping, rotation
and affine transformations were randomly applied with p = 0.5.

4.2.2 Metrics

Segmentation performance on all datasets were compared based on Dice accuracy computed
on the binary predictions, ŷi ∈ {0, 1}, obtained by thresholding predictions at 0.5. The
threshold of 0.5 is well suited when training with cross-entropy loss but not with Dice
loss. To alleviate this we also report the area under the precision-recall curve (PRAUC or
equivalently the average precision) using the soft segmentation predictions, si ∈ [0, 1] for
the 2D datasets.

The local feature map in Eq. (3) was used for MO-NuSeg and Lung-CXR datasets,
whereas the feature map in Eq. (5) yielded better validation performance for the retinal
vessel segmentation and BraTS datasets.

4.2.3 Model hyperparameters

The initial number of filters for the U-Net model was tuned from F=[8, 16, 32] based on the
validation performance and training time; F=8 for MO-NuSeg and BraTS datasets, F=16
for Lung-CXR , F=32 for retinal vessel dataset. The baseline MLP used in Lung-CXR
experiments consists of 6 layers, 64 hidden units per layer and ReLU activation functions
and was designed to match the strided tensor network in number of parameters.

The strided tensor network has two critical hyperparameters: the bond dimension (β)
and the stride length (K), which were tuned using the validation set performance. The local
feature dimension (d) was set to 4 for all the experiments; implications of the choice of local
feature maps is presented in Section 5.

13. https://pytorch.org/vision/stable/models.html#torchvision.models.segmentation.lraspp_
mobilenet_v3_large

14. https://github.com/lfwa/carbontracker/
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Figure 9: a) Influence of increasing bond dimension (and hence of number of parameters)
on the validation set performance for the Lung-CXR dataset. Standard deviation for Dice
accuracy (blue) is computed over the validation set. b) A typical learning curve from one of
the training runs for the proposed strided tenet model for the Lung-CXR dataset showing
the loss and accuracy trends for the training and validation sets.

4.3 Results

Tuning the bond dimension: The bond dimension controls the quality of the MPS ap-
proximations and was tuned from the range β = [2, 4, . . . , 30, 32]. The stride length controls
the field of view of the MPS and was tuned from the range K = [2, 4, 8, 16, 32, 64, 128]. For
MO-NuSeg dataset, the best validation performance was stable for any β ≥ 4, so we used
the smallest with β = 4 and the best performing stride parameter was K = 8. For the
Lung-CXR dataset similar performance was observed with β ≥ 20, so we set β = 20 and
obtained K = 32 (Figure 9-a). The best performance on the validation set for the retinal
vessel segmentation dataset was with β = 32.
MO-NuSeg: Performance on the MO-NuSeg dataset for the strided tensor network and
the baseline methods are presented in Table 1 where the PRAUC, Dice accuracy, num-
ber of parameters and the average training time per epoch are reported. The proposed
Strided TeNet (PRAUC=0.78, Dice=0.70) model obtains comparable performance with U-
Net (PRAUC=0.81, Dice=0.70). There was no significant difference between the two meth-
ods in their Dice accuracy based on paired sample t-tests. We also report the performance
of nnU-Net which shows a small gain in performance (PRAUC=0.84, Dice=0.72) compared
to the standard U-Net we report. We report the performance of the MPS TeNet model
in Efthymiou et al. (2019) which operates on flattened input images obtaining a Dice score
of 0.52 and PRAUC of 0.55. We further compare to the efficient LR-ASPP network which
obtains a Dice score of 0.64±0.10 and PRAUC of 0.61. Finally, we reproduce the CNN based
method from the MO-NuSeg dataset paper in Kumar et al. (2017) where they reported a
Dice accuracy of 0.69± 0.10.15

15. The run time with more recent hardware can be lower than what is reported in Kumar et al. (2017).
Note that the exact training-test splits between our experiments and Kumar et al. (2017) might not be
identical.
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Table 1: Test set performance comparison for segmenting nuclei from the stained tissue
images (MO-NuSeg) and segmenting lungs from chest CT (Lung-CXR). For all models,
we report the number of parameters |Θ|, computation time per training epoch, area under
the curve of the precision-recall curve (PRAUC) and average Dice accuracy (with standard
deviation over the test set). The representation (Repr.) used by each of the methods at
input is also mentioned.

Dataset Models Repr. |Θ| t(s) PRAUC Dice

MO-NuSeg

Strided TeNet (ours) 1D 5.1K 21.2 0.78 0.70± 0.10
U-Net 2D 0.5M 24.5 0.81 0.70± 0.08
LR-ASPP 2D 3.2M 10.5 0.61 0.69± 0.10
nnU-Net 2D 52.6M 24.5 0.84 0.72± 0.12
MPS TeNet (β = 10) 1D 58.9M 240.1 0.55 0.52± 0.09
CNN 2D – 510 – 0.69± 0.10

Lung-CXR

Strided TeNet (ours) 1D 2.0M 6.1 0.97 0.93± 0.06
MLP 1D 2.1M 4.1 0.95 0.89± 0.05
LR-ASPP 2D 3.2M 4.5 0.63 0.64± 0.04
2D U-Net 2D 4.2M 4.5 0.98 0.95± 0.02
MPS TeNet (β = 10) 1D 8.2M 35.7 0.67 0.57± 0.09

Lung-CXR dataset: Performance measures on the Lung-CXR dataset are also reported
in Table 1. As this is a relatively simpler dataset both U-Net and Strided TeNet models
obtain very high PRAUC: 0.98 and 0.97, respectively. There is a difference in Dice accuracy
between the two: 0.95 for U-Net and 0.93 for Strided TeNet, without a significant difference
based on paired sample t-test. In addition to the MPS TeNet (Dice=0.57) we also report
the performance for an MLP which obtains Dice score of 0.89. We also compare to the
efficient LR-ASPP network which obtains a Dice score of 0.64 ± 0.04 and PRAUC of 0.63.
Qualitative results based on two predictions where the strided tensor network had high false
positive (top row) and high false negative (bottom row), along with the predictions from
other methods and the input CXR are shown in Figure 10.

Table 2: Performance comparison for segmenting retinal vessels in the Retinal dataset. For
all models, we report the number of parameters |Θ|, computation time per training epoch,
area under the curve of the precision-recall curve (PRAUC) and average Dice accuracy (with
standard deviation over the test set).

Models |Θ| t(s) Dice

2D U-Net 7.5M 5.2 0.67± 0.16
Strided TeNet (ours) 3.2M 4.5 0.64± 0.10
Hybrid Strided TeNet 2.3M 3.8 0.66± 0.10
MPS TeNet (β = 10) 11.4M 26.1 0.31± 0.04
LR-ASPP 3.2M 8.1 0.23± 0.15

Retinal vessel segmentation dataset: Results for the test set for segmenting retinal ves-
sels is reported in Table 2 where we notice that U-Net (Dice=0.67) shows an improvement
compared to the Strided TeNet (Dice=0.64). However, using a 2-layered CNN based local
feature map and the MPS reported as the Hybrid Strided TeNet in Section 3.3 is able to
bridge the gap in performance compared to U-Net. The MPS TeNet is unable to handle
the complexity of this dataset (Dice=0.31). The efficient LR-ASPP network struggles on
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Figure 10: Two test set CXRs from Lung-CXR dataset along with the predicted segmenta-
tions from the different models. All images are upsampled for better visualisation. (Predic-
tion Legend – Green: True Positive, Grey: False Negative, Pink: False Positive)

Figure 11: Visualisation of the predictions from U-Net (b) and Strided TeNet (c) on one
retinal image patch (a). The false negative errors between the two methods are of different
nature; Strided TeNet misses block like regions (seen clearly when zoomed in) due to the
striding over K × K regions. (d) Predicted segmentation from the Hybrid Strided TeNet
which uses a 2-layered CNN-based local feature map. (Prediction Legend – Green: True
Positive, Grey: False Negative, Pink: False Positive)

this dataset and obtains a Dice score of 0.23 ± 0.15. Qualitative results are visualized in
Figure 11 for one input patch for U-Net and Strided TeNet.
BraTS dataset: The Strided TeNet was primarily formulated as a 2D segmentation model.
With these experiments on the BraTS dataset we study its performance on 3D segmentation
task by using flattened 3D patches instead of 2D patches as input to the Strided TeNet. The
results are reported in Table 3. We compare its performance with 3D U-Net (Çiçek et al.,
2016) and see that U-Net (Dice=0.69) easily outperforms the Strided TeNet (Dice=0.62).
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Table 3: Test set performance for the 3D segmentation task on BraTS dataset. We report the
number of parameters |Θ|, computation time per training epoch and average Dice accuracy
(with standard deviation over the test set).

Models |Θ| t(s) Dice

Strided TeNet (ours) 1.3M 70 0.63± 0.05
3D U-Net 1.4M 320 0.69± 0.08

5. Discussion

5.1 Performance on 2D data

Results from Table 1 for MO-NuSeg and Lung-CXR datasets show that the proposed strided
tensor network compares favourably to other baseline models. In both cases, there was
no significant difference in Dice accuracy compared to U-Net. The computation time per
epoch for the strided tensor network was also in the same range as that for U-Net. The
total training time for U-Net was smaller as it converged faster (≈ 50 epochs) than strided
tensor network model (≈ 100 epochs). However, in all instances the strided tensor network
converged within one hour. Also, note that all the models in this work were implemented
in PyTorch Paszke et al. (2019) which do not have native support for tensor contraction
operations. The computation cost for tensor networks can be further reduced with the use
of more specialized implementations such as the ones being investigated in recent works
like in (Fishman et al., 2020; Novikov et al., 2020). Additionally, performance with nnU-
Net (Isensee et al., 2021) on the MO-NuSeg dataset in Table 1 shows that nnU-Net achieves a
higher Dice score. However, this small improvement could be attributed due to the additional
pre- and post- processing conducted in the nnU-Net pipeline, which is not followed for any
other reported methods.

The qualitative results in Figure 10 reveal interesting behaviours of the methods being
studied. The predicted segmentations from the MPS TeNet (column 2) and MLP (column
3) are highly regularised that resemble average lung representations. This can be attributed
to the fact that both these models operate on 1D inputs (flattened 2D images); this loss of
structure forces the model optimisation to converge to a mode that seems to capture the
average lung mask. In contrast, the predictions from U-Net (column 4) and strided tensor
network (column 5) are closer to the ground truth and are able to capture variations between
the two input images. This can be explained by that fact that U-Net directly operates on
2D input and the underlying convolutional filters learn features that are important for the
downstream lung segmentation. The strided tensor network, on the other hand, operates on
1D inputs but from smaller image patches. The strided tensor network is able to overcome
the loss of spatial structure compared to the other models operating on 1D inputs by using
weight-shared MPS on small patches.

The results for retinal vessel segmentation task are reported in Table 2. Compared to
the first two 2D datasets that comprise structures of interest that are largely regular in
shape, this dataset is more challenging due to the variations in scale, shape and orientation
of the vessels. This is further aggravated by the differences in acquisition between the
three data sources as described in Section 4.1. The Dice accuracy for U-Net (0.67) shows a
small improvement that is significant compared to the strided tensor network (0.64) on this
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dataset. It can be explained by the large U-Net model that was used for this task (7.5M
parameters) compared to strided tensor network (3.2M). Further, and more importantly, the
1D input to the strided tensor network could affect its ability to segment vessels of varying
sizes, as seen in Figure 7.

5.2 Influence of local feature maps

The sinusoidal local feature maps in Equations (3) and (5) are used to increase the local
dimension (d), so that the lift to high dimensions can be performed. Non-linear pixel trans-
formations of these forms are also commonly used in many kernel based methods and have
been discussed in earlier works (Stoudenmire and Schwab, 2016). More recently, scalable
Fourier features of the form in Eq. (5) have been extensively used in attention based models
operating on sequence-type data to encode positional information (Vaswani et al., 2017;
Mildenhall et al., 2020; Jaegle et al., 2017). Although we do not explicitly encode positional
information, the use of these scalable Fourier features in Eq. (5) yielded improved results in
the retinal vessel segmentation task compared to use the local feature maps in Eq. (3).

CNNs are widely used as feature extractors for their ability to learn features from data
that are useful for downstream tasks. Building on this observation, we use CNNs to learn
local features instead of the non-informative sinusoidal features. We attempt this by using
a simple 2-layered CNN with 8 filters in each layer; the output features from the CNN
form the local feature map which are then input to the strided tensor network. The use of
CNN along with the strided tensor network results in what we call the hybrid strided tensor
network. Performance for this hybrid model (Dice=0.66) is reported in Table 2 where we
see it gives a small improvement over the standard strided tensor network (Dice=0.64). The
scope of this work was to explore the effect of learnable feature maps and it demonstrated
to be beneficial. Further investigations into how best to combine the strengths of CNNs as
feature extractors and tensor networks for approximating decision boundaries could yield a
powerful class of hybrid models.

5.3 Resource utilisation

Recent studies point out that overparameterisation of deep learning models are not nec-
essarily detrimental to their generalization capability (Allen-Zhu et al., 2019). However,
training large, overparameterised models can be resource intensive (Anthony et al., 2020).
To account for the difference in resource utilisation we compare the number of parameters
for each of the models in Table 1. From this perspective, we notice that for the MO-NuSeg
data, the number of parameters used by the strided tensor network (5.1K) is about two
orders of magnitude smaller than that of the U-Net (500K) without a substantial differ-
ence in segmentation accuracy. As a consequence, the maximum GPU memory utilised
by the proposed tensor network was 0.8GB and it was 6.5GB for U-Net. The number
of parameters for nnU-Net (52.6M) was four orders of magnitude larger than that of the
Strided TeNet. The additional resource consumption due to the extensive cross-validation
based model selection in nnU-Net further aggravates the increase in compute resources (for
instance, nnU-Net required about 60 hours to perform model selection on MO-NuSeg with
only 30 training examples).
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Figure 12: Progression of learning for the strided tensor network, for the task of segmenting
lung regions. Two validation set input chest CT images (column 1) and the corresponding
predictions at different training epochs are visualized overlaid with the ground truth seg-
mentation. Images are of size 128×128 and the stride is over 32×32 regions. All images are
upsampled for better visualisation. (Prediction Legend – Green: True Positive, Grey: False
Negative, Pink: False Positive)

Another reason for reduced GPU memory utlisation for the strided tensor network is
that they do not have intermediate feature maps and do not store the corresponding com-
putation graphs in memory, similar to MLPs (Selvan and Dam, 2020). This difference in
resource utlisation can be advantageous for strided tensor network as training can be car-
ried out with larger batches which can further lower the computation time and more stable
model training (Keskar et al., 2017). To demonstrate these gains in resource utlisation, we
trained the strided tensor network with the largest batch size possible: for the MO-NuSeg
where images were of size 1000 × 1000, it was B = 12 (whereas B = 1 for U-Net) with-
out any degradation in performance. Methods such as the LR-ASPP from Howard et al.
(2019) focus on improving the efficiency of CNN-based segmentation methods by improv-
ing upon existing MobileNet architectures. MobileNet architectures introduced depth-wise
separable convolutions by separating spatial filtering from feature generation to reduce the
computation complexity of performing convolutions. This has some similarity with the MPS
operations where the pixel classification is performed on small patches without feature ex-
traction. However, one main difference with our Strided TeNet is that we do it in a single
layer unlike LR-ASPP or other MobileNet architectures which use deep architectures. Our
experiments showed these methods to be efficient in terms of GPU memory utilization and
training times. However, the performance of LR-ASPP across all 2D datasets was lower
than the Strided TeNet. Fine grained tuning of model hyperparameters and pre-training
strategies could improve the performance of LR-ASPP.

5.4 MPS as a learnable filter

CNN-based models such as the U-Net operate by learning filter banks that are able to discern
features and textures necessary for a given downstream task. In contrast, the proposed
strided tensor network learns to classify pixels into foreground and background classes by
operating on small flattened image patches using a single weight-shared MPS tensor network.
In CNN jargon, this is analogous to learning a single filter that can be applied to patches
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from across the image. This behaviour of the strided tensor network for segmenting lungs by
operating on patches of size 32×32 and the gradual evolution of the MPS filter is illustrated
in Figure 12. Initially, the predictions are at the patch level where either an entire K ×K
patch is either predicted to be foreground or background. Within a few epochs the tensor
network is able to distinguish image features to predict increasingly more accurate lung
masks.

5.5 Influence of stride length (K)

The proposed Strided TeNet is shallow (in fact, single layered) and performs segmentation
at the input resolution of the images. This is in contrast with deep (multi-scale) CNN-
based methods such as the U-Net (Ronneberger et al., 2015). As discussed in Sec. 4, stride
length is an important hyperparameter of our method and for the various experiments it
was tuned from the range, K = [2, 4, 8, 16, 32, 64, 128]. The optimal K varied depending
on the structures of interest in each of the datasets. For instance, when segmenting small
nuclei in MoNuSeg dataset K = 8 whereas for the lung segmentation task K = 32. In effect,
the stride length directly controls the receptive field of our method. In cases where the
structures of interest could be of varying sizes – for instance in multi-organ segmentation
tasks – a single stride length might not be optimal. One way to overcome this could be
by using a one-vs-all segmentor where each class is segmented by a binary strided tensor
network with a specific stride length. Due to the overall lower resource requirements for
strided tensor networks, this combined approach could still be a competitive method.

5.6 Performance on 3D data

At the outset, the strided tensor network model was primarily designed for 2D segmentation
tasks. However, the fundamental principle of how the segmentation is performed – by
lifting small image regions to high-dimensional spaces and approximating linear classification
– could be directly translated to 3D datasets. With this motivation we performed the
experiments on the BraTS dataset for segmenting tumour regions from 3D MRI scans,
where the high-dimensional lift was performed on flattened 3D patches of size K3 instead of
2D patches. The results in Table 3 indicate that the strided tensor network approach does
not immediately translate to 3D datasets.

There are two possible reasons for these negative results. Firstly, the loss of structure
going from 3D to 1D hampers segmentation more than in 2D data. In previous work in Selvan
et al. (2021b) where tensor networks were used to perform image classification on 3D data, a
multi-scale approach was taken. A similar approach that integrates multiple scales as in an
encoder-decoder type model such as the 3D U-Net perhaps could be beneficial. Secondly, the
number of parameters required to learn the segmentation rules in 3D data could be far higher
than the 2D models which were applied on the 3D dataset. Due to GPU memory constraints
we could not explore larger tensor network models with higher bond dimensions (> 12) for
3D data, as we found it to be beneficial for the more challenging vessel segmentation task
where bond dimension was set to 32. Potentially, these challenges could be overcome by
taking up a multi-planar approach similar to the multi-planar U-Net Perslev et al. (2019)
where the training is performed using multiple 2D planes and the final 3D segmentation is
fused from these views.
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6. Conclusions

We presented a novel tensor network based medical image segmentation method which is an
extension of our preliminary work in Selvan et al. (2021a). We proposed a formulation that
uses the matrix product state tensor network to learn decision hyper-planes in exponentially
high-dimensional spaces. The high-dimensional lift of image pixels is performed using local
feature maps, and we presented a detailed study of the implications of different parametric
and non-parametric local feature maps. The loss of spatial correlation due to the flattening
of input images was overcome by using weight-shared MPS that operate on small image
patches. This we also demonstrated to be useful in reducing the exponential increase in the
number of parameters. The experiments on three 2D segmentation datasets demonstrated
promising performance compared to popular deep learning methods. Further, we adapted
the proposed strided tensor network for segmenting 3D data. Although these experiments
resulted in negative results, the insights gained by these experiments were discussed and
ideas for further improvements have been presented. The general idea of using simple local
feature maps, lifting the data to exponentially high-dimensional feature spaces and then
approximating segmentation decisions using linear models like the tensor networks is a novel
class of methods that can be explored further.
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